

2023 Illinois Dairy Summit

IS CUTTING COSTS ENOUGH? Strategies to improve Profitability

www.illinoismilk.org/DairySummit2023

Extension college of agricultural, consumer & environmental sciences

Follow us @ILMilkProducers @UIUCDairyExt

> 13th Annual Illinois Dairy Summit hosted by Illinois Milk Producers Association and University of Illinois Dairy Extension

2023 Illinois Dairy Summit

IS CUTTING COSTS ENOUGH? STRATEGIES TO IMPROVE PROFITABILITY

FEBRUARY 1 / 10 A.M. - 3 P.M.

AGENDA

10:00am	Registration
10:30am	Welcome IMPA Updates Tasha Bunting, Illinois Farm Bureau
10:45am	Are We Underestimating the Costs of Disease? Derek Nolan, Ph.D., University of Illinois
11:35am	What are We Breeding for, and How Much Does it Cost? A Summary of the Illinois Dairy Genetics and Profitability Survey Jared Hutchins, Ph.D., University of Illinois
12:25pm	Lunch & Booth Visits
1:25pm	Cover Crops Alternatives in Dairy Cattle Diets Phil Cardoso, DVM, Ph.D., University of Illinois
1:55pm	Producer Panel: What Works and What Doesn't for Cover Crops Moderator: Phil Cardoso, DVM, Ph.D., University of Illinois
2:55pm	Wrap up and adjourn

www.illinoismilk.org/DairySummit2023

SPEAKERS Contact Information

Phil Cardoso, DVM, Ph.D.

University of Illinois cardoso2@illinois.edu

Phil is an associate professor at the University of Illinois at Urbana-Champaign. He received his D.V.M., and M.S. degrees from the Universidade Federal Do Rio Grande do Sul in Brazil, and his Ph.D. from the University of Illinois. Since 2012, Phil has established a unique program that seamlessly blends his teaching, extension, and research efforts. Phil and his students have published over 75 peerreviewed manuscripts (original research and invited reviews) and 3 invited book chapters to date.

Jared Hutchins, Ph.D.

University of Illinois jhtchns2@illinois.edu

Jared is an applied microeconomist and an Assistant Professor in the Department of Agricultural and Consumer Economics (ACE) at the University of Illinois at Urbana-Champaign. His research focuses on topics important to the agricultural sector including technology and innovation, dynamic decision making, and the role of cooperatives in the economy. Leveraging some of Jared's personal experience in the agriculture sector, his research has been focused on topics important to both agriculture and development economics, including production economics, dynamic asset replacement, agriculture credit, and technology adoption.

Derek Nolan, Ph.D.

University of Illinois dtnolan@illinois.edu

Derek grew up on a dairy farm in Northeast Iowa. His passion for agriculture led him to Iowa State University where he earned his degree in Dairy Science. Derek completed both his Master's and Ph.D. at University of Kentucky with a research focus in milk quality and decision economics. Derek is now a Teaching Assistant Professor and Dairy Extension Specialist in the Animal Sciences Department at the University of Illinois.

MEET OUR DAIRY FARMER PANEL

CLINT HARRE

BRYAN HENRICHS

Prairie Farms Dairy Clinton County Gotmilk237@yahoo.com Prairie Farms Dairy Washington County Charre3@gmail.com

TONY GRAVES

Prairie Farms Dairy Richland County cloverfarmsdairy@gmail.com

BOARD Contact Information

Don Mackinson President

(Prairie Farms Dairy) Livingston County dmackinson56@gmail.com

Brent Pollard Vice President

(IAA Board Representative) Winnebago-Boone County pollard8@comcast.net

Tony Graves Treasurer

(Prairie Farms Dairy) Richland County cloverfarmsdairy@gmail.com

Mark Brase Secretary

(Dairy Farmers of America) Madison County mrkbrse@yahoo.com

Kappy Koch

(Prairie Farms Dairy) Tazewell County koch_5@frontier.com

Bryan Henrichs

(Prairie Farms Dairy) Clinton County gotmilk237@yahoo.com

Mark Tuttle

(IAA Board Representative) DeKalb County mtuttle@ilfb.org

Kurtis Johnson

(Dairy Farmers of America) Bond County villarosainc_553@hotmail.com

Randy Langrehr (Dairy Farmers of America-Alternate) Washington County rlmacho@yahoo.com

2023 Illinois Dairy Summit

Jared Hutchins, Ph.D.

University of Illinois

I ILLINOIS

What are We Breeding for, and How Much Does it Cost? A Summary of the Illinois Dairy Genetics and Profitability Survey

About Me

- Assistant Professor in the Department of Agricultural and Consumer Economics (ACE).
- Ph.D. from University of Wisconsin Madison in agricultural economics.
- I focus on dairy farming, especially how technology and innovation impacts dairy farming profits.
- Specific interest in the role of genetics.

uction Trends for GP and DP, Base = 2010

What are we breeding for, and how much does it cost? A summary of the Illinois Dairy Genetics and Profitability Survey

Jared Hutchins

Illinois Dairy Summit

February 1, 2023

ILLINOIS College of Veterinary Medicine

1

To this point, I've mostly focused on how benefits differ across farms.

In my dissertation research, I found that about 50% of the "return" to increasing PTAs for fat and protein are explained by the farm's environment, and not just the genetics.

So "bang for buck" depends on other decisions the farm makes. But something is missing here...

So we understand how it might benefit a farm...

Improved genetics leads to cows becoming more productive.

0.5

... but how much is it costing?

... but does it lead to more profit?

Surprisingly, there is far less data available on the costs of genetics.

Understanding the cost side is essentially to understanding profitability!

T

The Illinois Dairy Genetics and Profitability Survey

We sent a survey to Illinois dairy producers in order to start to understand:

- Genetic technology adoption (sexed semen, genomics, etc.)
- Breeding goals
- The cost of genetics
- Where farmers get information on genetics.

The Illinois Dairy Genetics and Profitability Survey

Our survey had a 15.5% response rate (around 60 responses).

Today, I want to present some preliminary results from this survey.

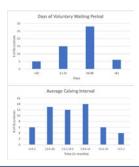
Feedback is encouraged,
especially since we aim to survey
even more farms in the future.

Breeding Goals When miding your brending decisions, what wright do you pet ex- ______ Production of a mulk yield, for yield, protein y ______ Hindle (e.g. medias, fordity, lansness, longe + ______ Type (e.g. midle score, daisy form) 100 Example: 40 Production 30 Health 30 Type 3 Production 2 Health Headda True 1 T)ps

What sorts of farms answered?

Q10: Percent Purebred

■ <35% ■ >75%


- Q8: As of today, what is the total number of adult cows on the farm?
- Average herd size: 186 lactating cows
 Median herd size: 100 lactating cows

Q9: Has the approximate number of adult cows changed in the last 12 months?

• 78.69% said herd size is the same OR decreased 21.31% said, herd size increased
 Average increase: 41 cows

Management decisions

- Average *calving interval*: 13.56 months
- Average voluntary waiting period: 60 days
- Average *days to first service*: 78 days

Breeding Goals

Q18. When making your breeding decisions, what weight do you put on each of these goals?

- Production (e.g. milk yield, fat yield, protein yield)
- _____ Health (e.g. mastitis, fertility, lameness, longevity) ÷
- _ Type (e.g. udder score, dairy form) +
- 100 =
 - Example: 40 Production 30 Health 30 Type

Breeding Goals

Q18. When making your breeding decisions, what weight do you put on each of these goals? Production (e.g. milk yield, fat yield, protein yield)

- + _____ Health (e.g. mastitis, fertility, lameness, longevity)
- _ Type (e.g. udder score, dairy form) +
- = 100 Average Weights: Example: 40 Production 30 Health 30 Type
 - Production: 43%
 - Type: 29%
 - Health: 27%

Breeding Goals

	Product	tion		Example:	3	Production	
	Health				2	Health	
	Туре				1	Туре	
	Percentage F	Ranked in Ea	ch Area	Production and health most likely to be 1 st and 2 nd ,			
	Production	Health	Туре				
1st Rank	<mark>44.07%</mark>	35.59%	20.34%				
2nd Rank	33.90%	38.98%	28.81%	Type most likely t	o be	3 rd .	
3rd Rank	23.73%	23.73%	50.85%				

Breeding Goals

_____ Total Performance Index (TPI)

_ Feet and Legs Composite

_ Udder Composite

_ Grazing Merit/Fluid Merit/Cheese Merit

	Mastitis					
	Infertility	(low pre	gnancy rat	te, high doses	per concept	ion)
	Calving Di	fficulty				
	Other dise	ease (list)	:			
				Calving		1 st : Mastitis, infertility
Rank 1st	Lameness I 18.64%	viastitis 33.90%	Infertility 35.59%		Other 0.00%	2 nd : Infertility
2nd	19.35%	20.97%				2 . Intertainty
3rd	25.00%	28.57%				3 rd : Mastitis
4th	37.04%	12.96%				4 th : Lameness, Calving Difficulty

Breeding Priorities

Q21. Which of these areas are health concerns you
wish to address with breeding? Check all that apply:

- 45% 🗖 Lameness
- 57% 🗖 Mastitis
- 62%
 Pregnancy Rate
- 67% Conception Rate
- 57% Calving Difficulty 3% 🔲 Other diseases (list them): _

22. Which of these trait indices are considering when selecting bulls? Check all that apply:

57%	Net Merit (NM\$)
46%	Total Performance Index (TPI)

- 13% 🛛 Grazing Merit/Fluid Merit/Cheese Merit
- 79% 🛛 Udder Composite
- 76% 🛛 Feet and Legs Composite

Most popular: Milk, Fat, Protein,

Conception Rate, Type, PL, DPR

Least popular: Feed efficiency, cow

Moderately popular: SCC,

Calving Ease

livability

Brooding Priorities						
Dieeung Flionties				Grazing	Udder	
		Net Merit	TPI	Merit	Composite	Feet & Legs
23. Of these 5 indices, rank them in order of	1st	34.48%	13.79%	3.45%	24.14%	17.24%
Breeding Priorities 23. Of these 5 indices, rank them in order of mportance when selecting bulls (1 = most mportant, 5 = least important): Net Merit (NM\$)	2nd	10.34%	22.41%	6.90%	27.59%	29.31%
	3rd	12.50%	26.79%	12.50%	23.21%	25.00%
important, 5 = least important):	4th	24.07%	31.48%	11.11%	14.81%	14.81%
	5th	16.33%	8.16%	57.14%	6.12%	10.20%
Net Merit (NM\$)		art au				
		1°: Ne	t Merit			

2nd: Udder Composite/F&L

- 3rd: TPI/Udder/F&L
- 4th: TPI
- 5th: Grazing/Fluid/Cheese Merit

Breeding Priorities

24. Which of these PTAs are considered when selecting bulls? Check all that apply:

- 85% D Milk yield
- 74% Fat yield/percentage 71% Protein yield/percentage
- 60%
 Somatic Cell Score
- 50% Daughter Pregnancy Rate 65% Conception Rate
- 71% Calving Ease
- 18% ☐ Feed Efficiency/Feed Saved 61% ☐ Productive Life
- 23% Cow Livability

Main takeaways:

Breeding goals:

- Most respondents are production and fertility oriented.
- Net Merit is popular, but so is udder and F&L (maybe
- even more popular!).

Breeding Costs

- Non-sexed semen: \$25 per straw
- Beef semen: \$12 per straw
- Sexed semen: \$40 per straw - Others need more data points

Breeding Information

- Main source: genetics companies - Other sources: other farmers, breed associations, etc.
- Mostly DIY for mating decisions and actual breeding.

Breeding Priorities

25. Of the above PTAs, list the five most important to you for choosing bulls (in order of importance, 1 = most important 5 = least important).

1		
2.		
3.		
4.		
5.		

		Calving	Concepti	Livabilit			Milk					<u>Eeed</u> Efficienc
		Ease	on Rate	¥	DPR	Fat YP	Yeild	PL	Protein	Type	SCC	¥
	1st Rank	5.45%	5.45%	3.64%	3.64%	21.82%	27.27%	7.27%	10.91%	14.55%	0.00%	0.00%
t	2nd Bank	9.23%	10.77%	1.54%	6.15%	20.00%	15.38%	7.69%	12.31%	12.31%	3.08%	1.54%
	3rd Rank	10.941	2 1 2 1	0.00%	7 91%	17.10%	7.91%	7.91%	20.219	10.94%	10.94%	2 121
	JIG IGHT.	10.347	3.43%	0.00%	7.047		1.047	1.047		10.34%	10.34%	3.43%
	4th Rank	10.71%	16.07%	3.57%	5.36%	5.36%	12.50%	12.50%	16.07%	7.14%	10.71%	0.00%
	5th Rank	9.62%	7.69%	0.00%	9.62%	5.77%	9.62%	25.00%	1.92%	11.54%	17.31%	1.92%
	1 st	and	2 nd	: Mi	lk, I	Fat						
	3rd:	Pro	otein	, Fat	ŧ –							
	4 th	: Pr	oteir	1, Co	once	eptic	on					
	sth	· Pr	oduc	tive	Life	6						
	2		ouut			-						

Breeding Technology 32. What percentage of your cows are typically bred using these methods:

- % AI, non-sexed semen. % AI, sexed-semen. % Embryo transfer % Natural service
- = 100

Average answer:

- 72 % AI, non-sexed semen.
- + 18 % AI, sexed-semen.
- + 2% Embryo transfer
- + 9% Natural service

Breeding Technology

	Non-Sexed Semen	Sexed Semen	Beef Semen	Genomic Testing	Embryo Transfer
Percent of farms using		69%	66%	26%	16%
Average Cost	\$24	\$39	\$12	\$59*	\$282* * High varianc

Actual Breeding/Servicing

Farm Owner Other

Farm Owner Other

Sources of information: advice

39. Who advises you on selecting genetics? Check all that

- apply:
- Your answers: Cooperative extension
- D DHIA
- Other dairy farmers
- Breed association (e.g. Holstein Association USA)
- □ Genetics Company (e.g. Select Sires, Genex)
- Veterinarian
- Other:

- 69% Genetics Company 29% Other, DHIA, & Cooperative Extension 11% Other dairy farmers
- 11% Breed association
- 5% Veterinarian

Sources of information: new bulls

38. Which of these information sources do you use to find out about new bulls and genetics? Check all that apply:

- Cooperative extension
 DHIA
 Other dairy farmers
- Breed association (e.g. Holstein Association USA)
- Genetics Company (e.g. Select Sires, Genex)
- □ Industry Publications (e.g. Hoard's Dairyman)
- □ Other:

81% Genetics companies

- 32% Industry publications
- 29% Other dairy farmers
- 24% Breed associations
- 13% Other, DHIA, Milk Processor, Extension

Question and Comments?

Jared Hutchins, Ph.D. Mumford Hall 312 1301 W Gregory Dr, Urbana, IL 61801 Email me at: **jhtchns2@illinois.edu**

Ι

2023 Illinois Dairy Summit

Derek Nolan, Ph.D.

University of Illinois

Underestimating the cost of disease

Derek Nolan Illinois Dairy Summit February 1st, 2023

Are We Underestimating the Costs of Disease?

Objectives

- · Discuss up-front vs hidden costs
- · Research of costs of diseases
- · Calculating the cost of disease
- SCC Research
- Take home messages

Why measure disease costs?

- Another benchmarking tool
- Disease has large impact on profitability
 - Up-front costs
 - Hidden costs

Differences in costs

- Up-front costs Costs easily identifiable – Help determine costs of current infections
- Hidden costs Costs not easily seen
 - -Often not considered but can contribute the most

🗕 I ILLINOIS 🛛

- -Hard to estimate and calculate
- -Highly dependent on the disease situation

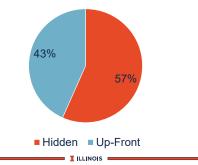
How do we look at costs of disease?

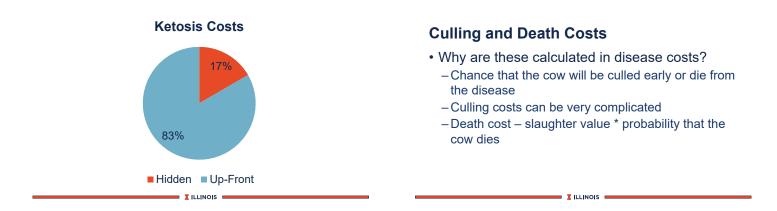
ILLINOIS

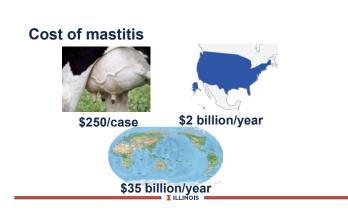
- · Measure the rate of infections
- Keep accurate treatment records
- · Success of treatment
- · Record milk withdrawal times
- These will help determine up-front costs

ILLINOIS

Costs of Disease per Case


Disease	Veterinary cost	Treatment cost	Labor cost
Mastitis	19.16 ± 15.27	57.46 ± 27.72	11.58 ± 6.00
Metritis	21.81 ± 17.01	67.08 ± 31.65	9.74 ± 4.51
Ketosis	20.99 ± 13.29	32.34 ± 19.30	11.96 ± 5.99
Left-displaced abomasum	87.30 ± 29.99	114.30 ± 62.35	15.63 ± 8.48
Retained placenta	17.61 ± 9.53	69.47 ± 41.52	11.86 ± 6.30
Lameness	36.57 ± 17.54	70.52 ± 44.31	13.10 ± 6.12
Hypocalcemia	30.13 ± 15.33	58.24 ± 37.97	12.60 ± 5.98
			Liang et al (2017)


🗕 I ILLINOIS 💻


Costs of Disease per Case (Hidden)

Disease	Discarded milk	Decreased milk production	Culling	Extended days open	Death	Total costs			
Mastitis	53.55	162.17	10.26	-1.54	12.05	325.76			
Lameness	2.01	23.83	24.98	5.86	11.10	185.10			
Metritis	33.58	3.29	7.25	11.41	16.26	171.69			
Retained placenta	NA	48.37	NA	5.41	NA	150.41			
Left-displaced abomasum	NA	169.80	25.73	2.54	21.69	432.48			
Ketosis	NA	1.00	4.72	1.67	5.42	77.00			
Hypocalcemia	NA	6.01	8.46	85.28	46.79	246.23			
	Liang et al (2017)								

Mastitis Costs

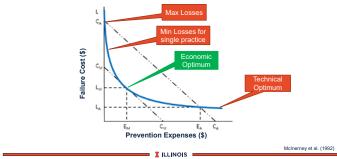
2 billion is an underestimation

Cost of a case of mastitis * US incidence rate

ILLINOIS

- Most of our costs are spent preventing the disease
 - –Post dip
 - -Pre dip
 - -Vaccinations

Total disease cost


$$C = L + E$$

- C = Total cost
- L = Losses benefits taken away (milk production, premiums)
- E = Expenses resources used to manage a disease (management, labor)

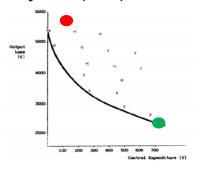
I ILLINOIS

McInerney et al. (1992)

Loss-Expenditure Frontier

McInerney et al. (1992)

· Three different scenarios for subclinical mastitis


ILLINOIS

- Teat disinfect all year long
- Dry cow treat every cow at dry off
- Milk equipment tests annually


Results

Management	practice	Estimated change (%)
	All yr	-11.7%
Teat dip	Part of yr	3.5%
	Not at all	0.0%
	Blanket	-9.3%
Dry-cow therapy	Selective	-4.4%
	Not at all	0.0%
Milking Machine	Annaully	-3.8%
Maintenance	Not at all	0.0%

McInerney et al. (1992)

van Soest et al. (2016)

Research Results

- Preventative costs need to be considered when calculating the cost of diseases
- · Some management practice do not pay off
- Can invest too much
- Management practices need to be adopted correctly

I ILLINOIS

Can farms lower their SCC and still make money?

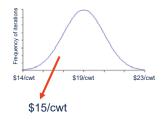
- Led to research by SQMI
- · Low SCC farms only want to get better
- Modeled the average Holstein herd enrolled in DRMS

Model of SCC Impact of US Dairy Farm

Variable	Input
Herd Size	205
Rolling herd average (lbs)	22,740
Somatic cell count (# cells/mL)	251,000

ILLINOIS

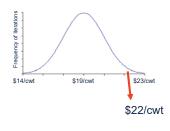
Herd SCC

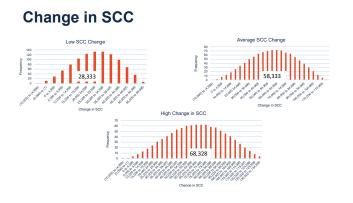

SCC Threshold cells/mL)	I (SCC*1,000		Lactation						
Upper SCC	Lower SCC	1	2	3+					
100	200	165	348	381					
200	300	196	372	423					
300	400	253	444	503					

ILLINOIS

Three different variables

- Milk Price
 - Premium offered
- Cost of Management Practice
- Management Practice Impact on SCC
- Simulate 1,000 scenarios


Milk price



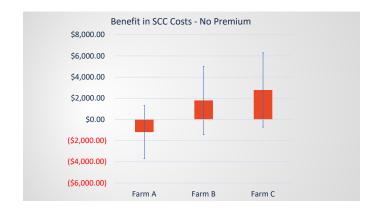
Milk price

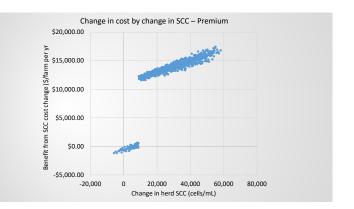
Milk price

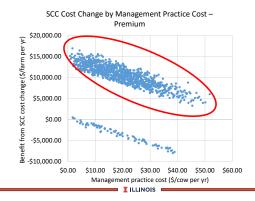


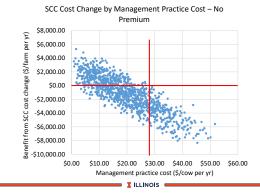
ILLINOIS

Management expense




ILLINOIS





Derek Nolan, Ph.D. | Are We Underestimating the Costs of Disease?

Research Results

- In most cases lowering SCC is economically beneficial
- Low SCC herds careful consideration
- Premiums should be strived for
- Consider impact on SCC before making a management decision

I ILLINOIS

Take Home Messages

- · Cannot control what we do not measure
- · Many costs of diseases are underestimated
- Do not consider prevention costs
- Up-front costs are great to benchmark

Take Home Messages

- · Total costs give better idea of impact of a disease
 - Consider change in total cost with adoption of management practices
 - Premiums should be thought of as an investment cost
- If management practices are not adopted correctly end up costing more money

I ILLINOIS

Thank you

Derek T. Nolan, PhD. Teaching Assistant Professor Dairy Extension Specialist University of Illinois 217-244-7637 dtnolan@Illinois.edu

I ILLINOIS

2023 Illinois Dairy Summit

Phil Cardoso, DVM, Ph.D. University of Illinois

Cover Crops Alternatives in Dairy Cattle Diets

ILLINOIS

Phil Cardoso DVM, MS, PhD Associate Professor

Cover Crops Alternatives in Dairy Cattle Diets

Cover crops are plants seeded into agricultural fields, either within or outside of the regular growing season, with the primary purpose of improving or maintaining ecosystem quality.

What do cover crops do for the environment?

- · Enhance biodiversity
- Increase soil infiltration, leading to less flooding, leaching, and runoff
- · Create wildlife habitat
- · Attract honey bees and beneficial insects

What do cover crops do for farmers?

- Reduce erosion
- Improve soil quality, through increases in porosity (reduced compaction)
- Soil organic matter
- · Water holding capacity
- · Beneficial microbes
- · Micro- and macro-invertebrates
- Retain nutrients that would otherwise be lost
- Add nitrogen through fixation
 (leguminous cover crops)
- Combat weeds
- Break disease cycles

Cover crops – how to choose

- If an incentive program is involved, check the requirements. Can you plant a cover that winterkills, or will you have to kill it next spring? Must you let the cover crops grow until a specific date?
- Start small. Learn how your cover crop performs in your natural and physical environments. Use this knowledge next year.
- Choose a cover that will achieve your goal and fit your planting window. As you narrow your choices, consider the recommended planting date for each one.

Research:

- Truterra (a division of Land O' Lakes) and the Soil Water Conservation Society (SWCS) have reported the early findings from a three year on-farm research study. The focus was to evaluate cover crops and the practice's effect on soil heath, soil erosion, carbon sequestration, and return on investment.
- The field-scale study spanned 2,400 acres in three states: Iowa, Kansas and Nebraska. The research compared cover crops to conventional practices.

Two of the key findings are:

f Illinois at Urbana-Ch

- Cover crops sequestered nearly three times as much greenhouse gas as the check fields. And acres with cover crops were carbon negative
- Sheet and rill erosion was cut in half. Wind erosion was reduced by 72%

Stat with where is your term? Brook			Overguigh		
Tell un yeur goein					
Mechanical Forage Harvest Val					
AM Oost+					
tilde current cash croe polio					
Current cash crop		Plenting delte		Harvesi date	
Cerm - Skippe	•	01 May 2023		01 Aug 2023	
Table desinable potions					
Drainage Option		-B	oding options		
Well Dramed		•	Salact Fooding option		
Cover crap type rollions					
Chopley cover crop	up cover crops by	104			

East of fly free period	* 50	itable for free	seeding	Ω								
Cover Crop		7,04	-	1	-	1	 -	-		1 20	1	
Cada. Second		Gauses		-								
Rorman Annual	0.	Grannen										
Tritcale Winter		Grasses										
Later Sinte		Grannen										
VIRIT JACKING		Granues			- 10	_						
Wiled. Peak		Genes			- 10							
Rvs. Wolter Cersel	DR	Games										
Sordhum Authonomy		Grannes			- 10							
Sudangens		Genes			- 10							
Ditrast_Webs		Gauses							•			
Santura		Games			- 10							
Close, Balance		Leganus										
Cover Beneen		Legenes										
Clover Crimean		Legumes										
Citver Ret	0.	Legumes										
Conces		Legates							12			
Pes. Exid Winter		Sections's										
\$403,79000	8	mathemical first	- 1 -								_	
SuperCont	OH.	harved value										
Wetch 1948y		Legames										
Collecta ar Kale		Branca										

New DMI equations

For far-off dry cows (>3 wk prepartum)

- DMI will be between 1.8 and 2% of BW
- Negatively correlated with dietary NDF

For close-up dry cows (<3 wk prepartum)

- DMI starts decreasing ~2.5 wk prepartum
- Rate of decline negatively correlated with dietary NDF
- At about wk 1 prepartum DMI about the same for all NDF (1.65% of BW)

5

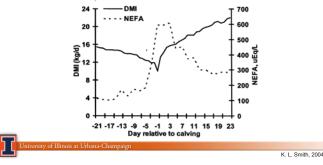
Close-up starch, fiber, and energy

- Almost impossible to separate these effects (e.g., as NDF goes up starch and NEL usually go down)
- Increasing prefresh energy (more starch, less NDF):
 - ➢Increases prepartum DMI
 - ➢Generally little effect on postpartum DMI
 - >Most studies show no effect on milk yield

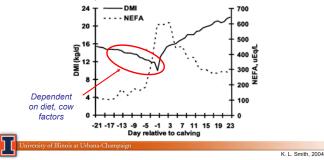
Summary – diet energy concentrations (Mcal/lb DM)

Cow class		
Far-off dry cows	0.63	0.71
Close-up dry cows	0.65	0.73
Fresh cows	0.76	0.84

Don't mix systems!


Overall changes in energy balance are small.

Use of pre-fresh diet to adapt rumen


• To "help rumen deal with higher starch postpartum diet"

"Based on available data, benefits of feeding a diet of moderate starch and fiber to transition ruminal cells and rumen tissue morphology from a high-forage diet to a higher-starch lactation diet are not evident."

Dry matter intake and plasma NEFA are inversely related

Dietary Recommendations for Dry Cows

- for mature cows

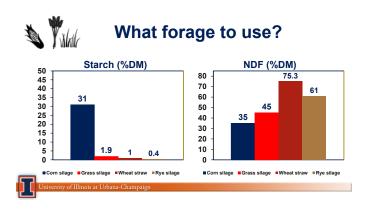
 Crude protein: 12 14% of DM
- Metabolizable protein (MP): > 1,200 g/d
- Starch content: 12 to 15% of DM (NEC < 26%)
- NDF from forage: 40 to 50% of total DM or 4.5 to 6 kg per head daily (~0.7 0.8% of BW). Target the high end of the range if more higher-energy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5 kg)
- Total ration DM content: <50% (add water if necessary)

 Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 – 0.40% sulfur, potassium as low as possible (Mg:K = 1:4), a DCAD of near zero or negative, calcium without anionic supplementation: 0.9 to 1.2% (~125g) calcium with full anion supplementation: 1.5 to 2.0% (~200g), 0.35 – 0.42% phosphorus, at least 1,500 IU of vitamin E, and 25,000 – 30,000 IU of Vitamin D (cholecalciferol)

How to build the dry cow diet?

- High forage digestibility is important
- Diets with more than 50% forage seem to work better
- No more than 4kg (~10 lb) of total DM coming from ingredients with more than 40% of NDF that are not from forage (by-product feeds)

How to build the dry cow diet? continuing...


- Cows usually eat 12–14 kg of dry matter (DM)
- 3 4 kg DM from chopped hay/straw
 Particle size < 1.5 in (3 cm)
- No more than 4 kg DM from corn silage (only USA?)
 Corn grain in the diet will come from corn silage
- Add forage with low energy and high NDF (hay/straw) if necessary

Feed	kg/day (DH)	kg/day (AF)	Nutrient (TMR)	
Com Silage Conventional 20in U of 1 2008 (02.34.19)	4.2	13.2	DM (%)	41.2
Wheat Straw 5 CP 79 NDF 16 LNDF_2242019	4.4	5.2	Crude Protein (% DM)	14.2
Oreas Silage 16 CP 45 NDF 15 UNDF whole Crop Wheat Silage 42 Off 42 NDF	0.0	0.0	Starch (% DM)	14.9
Where Crop wheat brage 42 DHI 42 NDP	0.0041	6.0	· · ·	
Com Oluten Feed dry	1.085	1.247	NDF (% DM)	45.7
DRY COW MEX	2.9974	3.2768	NDF from forage (% DM)	39.5
Click to add	12,4132	38.0716	Ca (% DM)	2.04
1018	12.402	21.0716	P (% DM)	0.37
Predicted DHE	12.6655		K (% DM)	1.25
Inputted/Predicted DMI (%)	99.439		<i>`</i>	
	27.5		Na (% DM)	0.09
Srinking Water Sitake (AF) Sital Water Sitake (AF)	45.8		CI (% DM)	0.84
			S (% DM)	0.34
			NEL (Mcal/kg)	1.38
			DCAD1 (meq/kg) (Ender et al., 1971)	-93
University of Illinois at Urbana-Ch			DCAD2 (meg/kg) (NRC 2001)	20

Diet Quick Report 6 - Review

	Unit	Minimum	Maximum
Dry Matter Intake	kg	12.0	14.0
Dry Matter	%	40,0	55.0
NEI	McaUkg	1.0	2.0
Forage NDF	% BW	0,2	1.0
peNDF	% DM	19.5	45.0
Starch	% DM	10.0	20.0
NFC	% DM	20.00	42.00
EE	% DM	3.00	5.50
MP supply	9	1,100.0	1,400.0
CP	% DM	13.0	17.0
RDP	% DM	9.5	14.0
Rumen NH3	% Reg	100.0	180.0
Met:ME	g/Mcal	1.08	1.19
Lys:Net		2.65:1	2.70:1
DCAD 1	(meg/kg)	-200	-50
Ca	% DM	0.70	2.00
Р	% DM	0.30	0.40
ĸ	% DM	0,0	2.00
Vitamin E	IU	2,000	3,000
Mg	% DM	0.35	0.50

ILLINOIS

				Dry	CON	v di	et – I	NO S	STR	AW										D	ry o	ow	die	t – ν	/ith	ST	RA	N		M	M 188	l	
-	-	-	-	-	٠	*	10100	-	.0	-	-	٠	-	***	1,00	1.000	-		-	-	-	×	*	11100 001100		0	5		۰	-	-	-	-
-		14	- 14		146	2.4	1.31	2.4	311	11.14	108.1	1.00	2011		241	114	-	34	14	87	-	1.6	-		-	19.07		-	100	-	114		
	:	100	12.00		1.0	100	1.0	-	-	1114		100	-	12882	-	1.100	125	- 8.1	1.48	1.4	12	1.0	10.0	-	-	11.0	12	LORD N	100	1 Married	1.0	-	12
-	1/	1.00	11.00			-	-	-	-	-	107		-	-			11.20		140	19.2	- 416	1.9	10.10	1.10				1.178.00	1.0	2.488.16 2.499.16	11	-	Ť,
	**	18	14.28		-	-	10	81		1136	100	10	-	-	15	1.10	-		-14			-	-	12	22	-		100.0	100	-	12	-	
2	**		14.58	-		-				11.00		1	2			1.1.7	4.1	41	14		-		03		-	-		1944	-				
		10	12	- 10	1.000	12	12		-	11.00	-	-	-	-	-	1.00	1	2	1.4	-	4	1	100		-	-	-	USER.	100	1.000	-		1
÷.	2	10	110	-010	1000	1.0	41	10.00	10	11.00	118	100	-	12	22	110	32	10	100	14.0	-0.0	100	100		20	100	12	110100	10	1010	11	2	Ê
	11	1.54	18.10	-0.0	1.18		0.40 0.44	30	1.0	11.00	110	10	1001.4	10	1.0	3 100	12.14	10	106.	10	4154	1.02	14	***	12.00	15.hz		1704.00	148	100.00	1.14		1
	**	100	-	-	1.00	-	1.0	-	-	10.00	-	1.0	-	-	1.41	114	22		140	22	-	14	-	12	-		-				-		1
110			18.07	***	1.0	3.8 3.2	1.9	20.8 30.4	10	11.00	108	12	285		281	115	-	. 41	- 14		#1 #4	1.9	22	11	38 72	18.00 N 12	1.8	U.S.M.		13435	10		-
111	::	1.0	11.07		100		19	-		14.00	1000	-	200	-	-	1.10	-	47	100	12	-	240	-	10				COR.M.		1409			-
111		-	18.00		130	-	141	340		113	-	1.3	280		28																		
14		15	14.00	411	148	2.2	2.45	20.00	14.EU 19.EU	11.00	110	10.	-	1.8	24	1 1.00	12.41	47	1.0	4.9	-	120	28.0		20	1145	10	1,200,00	1.0		18	100	11
	**	1.04	21.0		1.1	-	1.0	262	10.00	11.00	101.0	1.00		-	2.00	1.100	100		1.00	117	-	1.00	-	1.01	-	-		1.100	1.0	127.00			1.1
-			20	100	144	-		-		11.00	100.00				10	110	22		Lat	12	1.00	1.2	-		-	144	-	1,121.86	119		10		1
	2	100	100	- 10	14	=		60		11.00	-	1.00	-		2	112	N.P.	- 1.0	140	11	-	11	100	11	-	-	-	1,1,21.96	1.12	1.000	18	-	E
-						-				- 14		-	-					14	tat	1	-	14	84	18	24	-	22	1.8.8	1.0	1 Per la	10.		2

ILLINOIS

Diet Quick Report 6 - Review

TMR without Straw	AVG	MIN	MAX	TMR with Straw	AVG	MIN	MAX
Cost per head, \$	4.69	3.89	5.49	Cost per head, \$	4.31	3.55	5.5
Dry Matter Intake, kg/d	12.13	11.46	13.55	Dry Matter Intake, kg/d	12.90	12	13.80
Nel, Mcal/kg	1.54	1.49	1.59	Nel, Mcal/kg	1.42	1.35	1.5
Starch, % DM	18.57	14.72	28.27	Starch, % DM	16.41	12.53	22.46
NFC, % DM	32.56	27.97	39.84	NFC, % DM	26.73	22.88	31.90
Forage NDF, % BW	0.40	0.06	0.49	Forage NDF, % BW	0.68	0.51	0.83
peNDF, % DM	23.47	10.68	28.05	peNDF, % DM	36.23	30.77	39.57
CP, % DM	16.50	11.34	20.76	CP, % DM	15.14	13.11	18.07
MP Supply, g	1119	1100	1166	MP Supply, g	1138	1100	1236
EE, % DM	4.53	3.69	6.13	EE, % DM	3.84	3.08	4.37
Vitamin E, IU	1831	164	2707	Vitamin E, IU	1987	152	2770
Met:ME	1.11	0.91	1.61	Met:ME	1.13	0.87	1.65
Lys:Met	2.67	2.07	2.97	Lys:Met	2.63	2.01	3.06
DCAD1, meq/kg (Ender et al., 1971)	-72	-160	-27	DCAD1, meq/kg (Ender et al., 1971)	-62	-169	150
				INOIS			

Diet Quick Report 6 - Review

Mklir

XKK

		Difference (w/o Straw – w Straw)		AVG		MAX
Cost per head, \$	4.69	Cost per head, \$	0.38	4.31		
Dry Matter Intake, kg/d	12.13	Dry Matter Intake, kg/d		12.90	12	13.80
Nel, Mcal/kg	1.54	Nel, Mcal/kg	0.12	1.42		
Starch, % DM	18.57	Starch, % DM	2.16	16.41		
NFC, % DM	32.56	NFC, % DM	5.83	26.73		
Forage NDF, % BW	0.40	Forage NDF, % BW		0.68		
peNDF, % DM	23.47	peNDF, % DM		36.23		
СР, % DM	16.50	CP, % DM	1.36	15.14		
MP Supply, g	1119	MP Supply, g		1138		
EE, % DM	4.53	EE, % DM	0.69	3.84		
Vitamin E, IU		Vitamin E, IU	-156	1987		
Met:ME	1.11	Met:ME	-0.02	1.13		
Lys:Met	2.67	Lys:Met	0.04	2.63		
DCAD1, meg/kg (Ender et al., 1971)		DCAD1, meq/kg (Ender et al., 1971)	-10	1971) -62		
		TILLINOIS				

Rye silage

			Annual rye :	stage statistics provided for o	Imparison
E	Crude Protect	NEM	Dry Easin	Median 12.87	20% Range 7.56 - 19.13
Farmer: I have done 140 acres of	AD JOP % of OP	14CP	4.26	6.73	3.21 - 14.73
	ND-IOP w/SB	NCP	10.68		
Rye. The moisture on this sample	Protein Sol	NCP	62.30	63.37	34.57 - 75.28
	AmericaCP	MCP	14.25	12.84	3.75 - 30.54
is wetter than what it is our	AOF	NCM	33.45	40.63	31.76 - 48.71
13 Wetter than what it is our	aNDF	NCM NCM	60.23	60.94 57.30	47 73 - 70 77
koester tests have been in the 33-	aNDFom Light	SACK of	47.64	57.30	44.05 - 67.96
Koester tests have been in the 55-	NOFD12	MOFen	48.05		
B 40/ 11 11	NOFD 30	MOTon	63.37	61.74	43.91-76.60
34% range. It was cut in mid may	NOFD 120	ShOfen	73.72	73.35	60.57-83.24
	NOFCOM	Marian	15.55	75.00	61.87 - 85, 18
no heads. It's feeding really well	INDFormitz	NEM	24.75		
no noudo. Ito locality touly tou	uNDForm30	NEM .	17.45	21.05	1109-3571
	MDFore120	92.00	12.52	15.07	8.37-25-57
Phil: How have you been using it?	wNDF om 240	NCM.	11.65	14.06	7.64-24.60
Fill. How have you been using it?	Sugar (ESC)	SCM	0.63	1.40	0.23 - 3.90
	Sugar (WSC)	9.CM	3.91	4.93	1.62 - 10.34
Replacing what for Rye?	Starch	NEM	0.10	0.40	0.10-3.22
1 5 5	Fat (CE) TEA Gat	NCM NCM	149	3.99	0.95.2.50
	16-0 Palenter	D.FA	22.82	23.65	1960 - 2912
Farmer: Both alfalfa silage and	18.0 Starrs	SIFA	1.34	1.90	0.81-4.06
annon. Doth anana onago ana	18.1 Okat	STEA	1.05	5.64	2.33 - 12.88
corn silage	182 Linoletic	STEA	22.82	21.26	37.21 - 35.67
corri silaye	18.3 Lancienic	SIFA	43.62	45.35	19 70 - 55 66
	10	NEM	13.43	10.74	7.01-15.94
	Calcium	NCM .	0.57	0.36	0.24-0.68
	Photohonus	SEM.	0.43	0.37	0.25-0.47
	Magnesure	942.88	0.25	0.16	0.12-0.26
	Polassium	SCM	3.43	2.14	1.64+3.74
	Sullar	NCM	0.26	0.19	0.12 - 0.27

Moisture 70.33% Dry Maner 29.67% pH 4.66

ILLINOIS

Lessons learned from the 2021 Illinois Dairy Summit

On February 3, 2021, the University of Illinois and the Illinois Milk Producers' Association held the Illinois Dairy Summit. This year's event, which was conducted virtually, was attended by more than 150 people, and we had good discussions. The proceedings and recorded presentations are available at no charge through the IMPA website (http://www.illinoismilk.org/dairy-summit/). The meeting's goal was to bring information to dairy farmers in IL regarding protecting their milk check during COVID-19 and beyond. I have selected a few take-home messages from the meeting to share with you. I have also indicated in parentheses where you can learn more about the specific topic in the recorded video (https://vimeo.com/508693470). I hope you find this information helpful. Stay safe, and feel free to reach out if you have any questions.

- Negative producer price differentials (PPD) in 2020 were not necessarily a deduction from your milk check, but were due to Federal Milk Marketing Order (FMMO) accounting rules. Dr. Newton stressed that the money was never really in the marketplace. The milk's component value was greater than the milk's value in the pool, and the FMMO had to make the deduction for the pool to equalize (<u>09:40 in the video</u>). The FMMO was established in the 1930s, and we may see a reformulation of milk pricing due to the change in the pool of Class 3 milk (the milk used to produce cheese).
- 2. Corn and soybean prices are on an upward trend. Dr. Hutjens challenges you to keep your total mixed ration (TMR) cost below \$0.117 per lb of dry matter. Canola meal, blood meal, soy hulls, and fuzzy cottonseed prices were above the breakeven values of \$283/ton, \$883/ton, \$180/ton, and \$288/ton, respectively in January 2021. In addition, it seems that there is not much to lose in trying cover crops in Illinois. One of the strategies to implement cover crops is to plant them in September, after corn silage or soybean harvest (1:05:05 in the video).

Dairy Extension

- 3. Making sure that your cows are efficient is still an important goal to achieve profitability on your farm. During the transition period, three feeding strategies can add to your milk check by improving milk components (mainly protein). We recommend that the dairy milk component efficiency (lb of milk fat + lb of milk protein/dry matter intake) of your herd be at least 10, ideally greater than 11. The Dairy Efficiency Calculator from our lab can help you in calculating efficiencies (https://dairyfocus.illinois.edu/tools/dairy-efficiency-calculator/). Feeding cows with the right amount of energy (not more, not less) before calving can lead to a cheaper diet and healthier cows after calving. Feeding a negative dietary cation-anion difference (DCAD) diet before calving can enhance a cow's health and reproductive success, especially when forages are a challenge due to high potassium levels. Rumen protected amino acids (methionine and lysine) are an effective strategy (especially with high blood meal prices) to improve milk protein, heath, and fertility of your cows (<u>1:53:25</u> in the video).
- 4. Understanding the controllables of your milk check is of the utmost importance. You can control production, milk components, and the milk quality bonus. Dr. Nolan highlights benchmarks for milk income, feed cost, and operating cost for farms in IL (2:09:30 in the video). Purchased feed in IL (\$8.00/cwt) was more expensive than in the US as a whole (\$7.20), leading to total feed costs of \$12.89 for IL and \$10.59 for the US. Home feed costs are associated with farm size. Smaller herds have higher feed costs than larger herds. Also, make sure to achieve the quality bonus in your milk check. One way to do that is using the Somatic Cell Count (SCC) Calculator from our lab (https://dairyfocus.illinois.edu/tools/somatic-cell-count-calculator/). A few high-SCC cows can cause you to miss the bonus for the whole tank. Always estimate the benefits (minus costs) of management practices before adoption.

-Dr. Phil Cardoso, Associate Professor, Dept. of Animal Sciences, University of Illinois

2

Phil Cardoso, DVM, Ph.D. | Cover Crops Alternatives in Dairy Cattle Diets

Can nutrition help to alleviate heat stress in dairy cows?

Heat stress occurs in dairy cattle when there is a negative balance between the amount of heat energy an animal produces and the amount transferred from the animal to its surrounding environment. An estimated \$2.4 billion is lost annually in livestock production due to the effects of heat stress, including roughly \$900 million in the dairy industry. These economic losses in the dairy industry are mainly attributed to decreased milk production, adverse effects on milk composition, decreased reproductive performance and increased culling rate. Many heat abatement practices have been implemented on dairy farms. Some of these practices include increasing shaded areas, increasing air velocity by use of fans, and water-soaker lines to increase evaporative heat loss. Even when these management practices are implemented, heat stress still causes significant economic issues for dairy producers on a national and global scale.

Historically, a decrease in feed intake has been assumed to be the primary driver of reduced milk yield in cattle experiencing heat stress. However, recent research has demonstrated that declining feed intake only accounts for approximately 35 to 50% of the decrease in milk yield. Other more chronic physiological and metabolic alterations also play a role. Not only does heat stress decrease overall milk yield, but milk composition is also altered, specifically milk protein concentration. Previous research has also found decreases in milk protein and milk casein concentration when cows are subjected to elevated ambient temperatures. These alterations in milk composition seem to be due to factors beyond a decrease in feed intake and are likely caused by reduced delivery of protein precursors to the mammary glands and increased utilization of amino acids for other biochemical processes, such as acute phase protein and heat shock protein synthesis.

Dairy Extension

Feeding diets balanced for proper amino acid content increases lactation performance and milk protein and fat concentration while also improving responses to stressful conditions, under which feed intake often decreases. Specifically, improved lactation performance and reduced inflammatory responses have been reported when the most limiting amino acids for dairy cattle (methionine and lysine) are fed in their rumen-protected form. Figure 1 shows the milk protein concentration at the bulk tank for our Dairy Research Unit from January 2014 through April 2021.

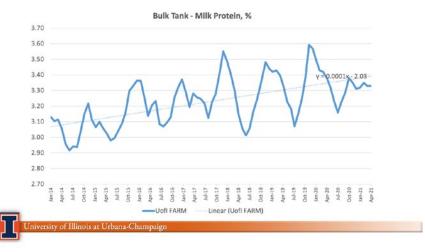


Figure 1. Milk protein concentration at Dairy Research Unit bulk tank, January 2014 through April 2021

You can see that since we started formulating diets for amino acids, our milk protein concentration has increased linearly. Interestingly enough, we can obtain milk protein concentration higher than the average of farms around us (route; our neighboring 35 dairy farms) or all the farms that send milk to the Milk Plant. This is true even during the summer months, when milk protein concentration decreases.

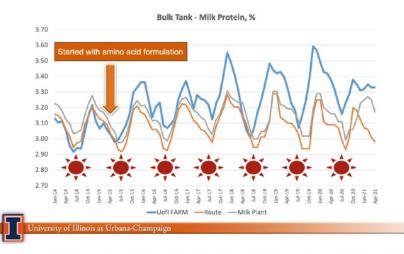


Figure 2. Milk protein % at U of I, surrounding farms, and Milk Plant, January 2014 through April 2021

2

We have been learning a lot about how to formulate diets for amino acids. Here are some key points:

- Formulating diets based on crude protein is like driving a car while looking into the passenger's side mirror.
- Pre-fresh cows need no less than 1,200 g/day of metabolizable protein (MP).
- Diets should have a LYS:MET ratio between 2.7:1 and 2.8:1. (CNCPS model)
- MET should be supplied at ~1.0–1.17 g/Mcal ME.
- LYS should be supplied at ~2.90–3.16 g/Mcal ME.

Talk with your nutritionist, veterinarian, and dairy consultant about how to formulate your cows' diet for amino acids to improve performance during the summer and after. We're glad to join the conversation!

-Dr. Phil Cardoso, Associate Professor, Dept. of Animal Sciences, University of Illinois

Wheat straw in dry cow diets: A Dairy Tech Tour experience

Straw or other roughage in the dry cow diet must be consumed in the desired amounts. If cows sort out the straw, they will consume too much energy from the other ingredients, which may be poor. In July, during the Dairy Tech Tour hosted by Beer's Robo Holsteins Dairy Farm near Mascoutah in St. Clair County, we saw a controlled-energy diet for dry cows in action. Mark and Marvin mentioned that since the adoption of this diet, the number of ketosis cases had reduced tremendously. Keeping up with a good mixed diet is not easy. Marvin mentioned that, because of the tour, he did not have enough time to process the straw in the mixer on that day. He mixed it for 5 minutes instead of 20 minutes. We could fix that by using the Penn State Particle Separator on the dry cow TMR. There were four sieves: upper (19-mm pore size), middle (8-mm pore size), lower (4-mm pore size) sieves, and the pan. The upper sieve caught around 54% of the material on that day. The upper sieve caught more material than the middle sieve. This is characteristic of wheat straw that has not been well processed by the mixer. Usually, you should shoot for the prepartum TMR with 6.1 \pm 3.0% of material on the upper sieve, 47.8 \pm 5.3% on the middle, 20.0 \pm 3.0% on the lower sieves, and 26.1 \pm 6.7% in the pan.

Much research suggests that short-chopping forages will result in not only greater dry matter intake (DMI) but may also help reduce the amount of feed sorting in lactating cow and dry cow diets. Researchers from Canada reported that cows fed a high-straw dry cow diet with a smaller straw particle size (chopped with a 1-inch screen) had improved intake during the dry period, sorted feed less, and maintained more consistent intake in the week leading up to calving compared to the longer straw (chopped with a 4-inch screen).

MS student Emily O'Meara in the transition cow station

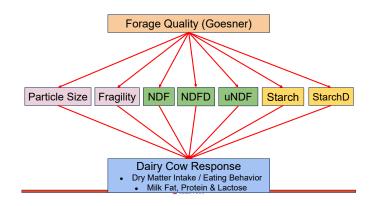
Another area of concern is the physical difference between a high-straw, lesser moisture dry cow ration and a more dense, greater moisture lactating ration. Controlled-energy dry cow diets typically contain a high proportion of dry forages and thus have lower moisture content than most lactating diets. Researchers in Canada have found that addition of water to lactating cow rations that are low in moisture has been demonstrated to have some beneficial effects, including reduced sorting and resultant greater milk fat content (Leonardi et al., 2005). They also reported that increasing the moisture content of a high-straw dry cow diet (from 53% to 45% dry matter) through water addition, improved DMI during the dry period, resulted in less sorting of that diet, and maintained more consistent DMI in the week leading up to calving. Talk with your nutritionist, veterinarian, and dairy consultant about how to formulate your dry cows' diet for controlled energy to improve performance. We're glad to join the conversation.

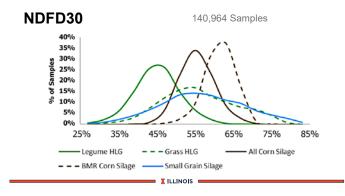
-Dr. Phil Cardoso, Associate Professor, Dept. of Animal Sciences, University of Illinois

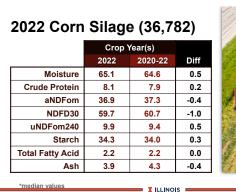
2023 Illinois Dairy Summit

Mike Hutjens, Ph.D. UIUC Dairy Specialist, emeritus Economic Feeding Opportunities and Solutions in 2023: 2023 IMPA Seminar

Economic Feeding Opportunities and Solutions In 2023


Today's Economic Choices


- 1. Higher milk production with higher feed costs
- 2. Lower milk production with lower feed costs
- 3. Higher milk production with lower feed costs


ILLINOIS

Forage Quality As A Tool

🗖 🔳 🔲 🖬 🗖

Mike Hutjens, Ph.D. Economic Feeding Opportunities and Solutions in 2023: 2023 IMPA Seminar

2022 Corn Silage Results

	Corn Silage		BMR Co	rn Silage
	2022	2020-22	2022	2020-22
Moisture	65.1	64.6	67.1	66.2
Crude Protein	8.1	7.9	7.9	7.9
aNDFom	36.9	37.3	37.6	38.0
NDFD30	59.7	60.7	68.1	67.3
uNDFom240	9.9	9.4	7.9	7.7
Starch	34.3	34.0	32.8	32.4
Total Fatty Acid	2.2	2.2	2.2	2.2
Ash	3.9	4.3	3.7	4.3
*median values				

Alfalfa Haylage (18,043 samples)

	2022	2020-22	Difference	
Moisture	56.6	56.8	-0.2%	
СР	21.4	21.2	0.2%	
aNDFom	36.3	36.4	-0.1%	
NDFD30	49.1	48.5	0.6%	
uNDFom240	16.5	16.7	-0.2%	
Ash	11.1	11.1	0.0%	
RFV	152	151	1.0	
RFQ	162	160	2.0	
*median values				

World Dairy Expo, 2022, Forage Winners

Nutrient	Alfalfa haylage	Corn Silage	BMR Corn Silage
Dry matter (%)	38.9	33.9	33.9
Crude protein (%)	25.6	7.1	7.7
NDF (%)	25.9	34.9	32.3
NDFD (% NDF)	54.9	64.5	75.6
Ash (%)	11.5	3.2	NA
Starch (%)	NA	42.4	32.3
RFQ (units)	277	NA	NA
Milk 2006 (lb / ton)	3715	4029	4045

Evaluating Feed

Ingredient Costs

ILLINOIS

Forage NDFD—30 hours (> 50% leg/grass; > 60% CS)

Represents the digestibility of the cell wall of your forage (NDF or neutral detergent fiber)

Forage uNDFD--240 (< 2.4 kg for 635 kg cow)

Represents the amount of forage a cow can consume before meeting her physical capacity (fill factor)

ILLINOIS

Factors For 2023

- Yields in Brazil and Argentina
- Export to China and other countries
- War in Ukraine with Russia
- Spring planting and weather in U.S.

Ethanol production

Midwest U.S. Breakeven Prices Sesame, January, 2023

Feed	Current	Breakeven
Distillers grain	\$260/ton	331/ ton
Corn gluten feed	236/ton	\$263/ton
Soy hulls	\$223/ton	\$209/ton
Fuzzy cottonseed	\$375/ton	\$353/ton
Wheat midds	\$221/ton	\$208/ton

Midwest U.S. Breakeven Prices

Sesame, January, 2023

Feed	Current	Breakeven
Shelled corn	\$257/ton	\$240/ton
SBM—48%	\$455/ton	\$469/ton
Corn silage	\$55/ton	\$94/ton
Average quality alfalfa hay	\$210/ton	\$233/ton
Soybean meal heated	\$495/ton	\$592/ton
Canola meal	\$445/ton	\$315/ton
Hominy	\$216/ton	\$223/ton

Feed Efficiency As A Tool

Milk Yield Targets
•
for Feed Efficiency

Source: The Ohio State University

	Milk Yield		Feed
ts	lb.	kg	Efficiency
	55	25	1.25
тсу	60	27	1.32
	65	30	1.38
ty	70	32	1.44
(y	75	34	1.49
	80	36	1.54
	85	38	1.58
	90	40	1.63

Economics of Feed Efficiency

🗕 I ILLINOIS 💻

(70 pounds milk and \$0.15 / pound DM)

Feed Efficiency (Ib milk / Ib DM)	DMI (Ib/day)	Difference (savings/day)
1.3	53.8	
		\$0.58
1.4	49.9	
		\$0.49
1.5	46.6	

Feed Benchmarks 2023 (Illinois)

Feed costs per cow per day	\$8.16	
1. Feed cost per pound of DM	0.15	
	Milk Pro	duction
	80 lb	70 lb
2. Feed cost per cwt milk	\$10.02	\$11.65
3. Income over feed costs/cwt	\$11.98	\$10.35
4. Feed efficiency (kg milk/kg DM)	1.63	1.43

Kernel Processing Score

ILLINOIS

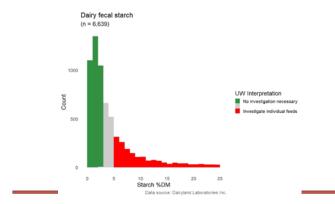
Excellent

RD Shaver UW-Madison

Measuring Milk Profitability As A Tool

ILLINOIS

I ILLINOIS


Kernel Processing Scores As A Tool

<figure>

🗖 I LLNC

Fecal Starch Levels As a Tool

Milk Urea Nitrogen (MUN) As a Tool

MUN Values

Older guidelines	10-14 mg/dl			
New guidelines	8 -12 mg/dl			
Reproductive concerns	> 16 mg /dl			
 Protein losses (10 to 15 mg/dl) 	2+ pounds SBM			
Environmental concerns	> 12 mg / dl			
If less than 8 mg/dl, limits microbial growth				

Take Home Profit Messages

ILLINOIS

- Use all available tools to measure optimal performance (fecal starch, KP scores, grain processing size, MUN, feed efficiency, etc.)
- Control the controllable costs
- Optimize milk yield and components
- · You may not be able to save your way to profits

💻 I ILLINOIS 🛛

Thank You to the following Agri-Businesses for their sponsorship to our Illinois Dairy Summit

You're here for the Moo.

We're here for UUUL.

Soy nutrition is a vital component for all Illinois livestock. That's why Illinois Soybean Association is proud to partner with other organizations in support of livestock expansion efforts across the state, supporting dairy cattle producers as they work to improve farms, grow animal agriculture, and meet demand with home-grown solutions.

One farm at a time.

-unded by the Illinois Soybean Association Checkoff Program

Building world class nutrition with you

Trusted partnerships to create tomorrow's opportunities.

Connect with us at

o.adm.com/dairy

Energy Efficiency

Save on Energy With the Ameren Illinois Energy Efficiency Program

Increase the efficiency of your farm and lower your utility costs with financial incentives from the Ameren Illinois Energy Efficiency Program. In addition to incentives for LED lighting upgrades, HVAC equipment, new construction and custom projects, our Program also offers:

- » High-Efficiency High-Speed Exhaust/Ventilation Fans
- » High-Volume Low-Speed (HVLS) Fans for Agriculture
- » Scroll Compressor for Dairy Refrigeration
- » Milk Pre-Cooler

- » High-Efficiency Circulation Fans
- » Livestock Ventilation Fan Controller
- » Livestock Waterer
- » Dairy Water Heater

These incentives make these energy-efficient upgrades more affordable, and with the upgrades you'll have energy savings continuing to add up year after year.

To learn more about the ways our Program can benefit your farm, scan the QR code or visit us at *AmerenIllinoisSavings.com/Ag*.

BONUS

You can receive 15% MORE INCENTIVES for your qualifying natural gas or electric project completed by March 30, 2023. Visit our booth for more details.

ARENTSEN FARM Sales & Service, Inc.

Located in Albers, IL

Assisting Farmers to produce a quality product.

Please contact our sales department.

618-248-5005

Your farm is your legacy

Let us help you protect it with a customized **Dairy Revenue Protection Plan**.

- Free to get started today!
- Cover up to 95% of your expected quarterly revenue
- Opportunity to lock in prices daily
- Lock in your plan for up to 5 quarters in the future
- Class Pricing or Component Pricing options available

Josh Maschhoff | Crop & Dairy Specialist 246 W. St. Louis St., PO Box 112, Nashville, IL 62263 Josh.Maschhoff@countryfinancial.com | 618-201-3487

Devin Maschhoff | Crop & Dairy Specialist 246 W. St. Louis St., PO Box 112, Nashville, IL 62263 Devin.Maschhoff@countryfinancial.com | 618-314-0389

Policies issued by COUNTRY Mutual Insurance Company*, Bloomington, IL. This entity is an equal opportunity provider. ©2023 CC Services, Inc.

Lending Support to DAIRY FARMERS

Farm Credit supports dairy farmers with reliable, consistent credit and financial services today and tomorrow. **Proud to support the 2023 Dairy Summit**

ЛТ

Serving the southern 60 counties of Illinois

Farm Cre

www.farmcreditlL.com ask@farmcreditlL.com

Helping Farm Families Succeed

PROUD SUPPORTER of the

ILLINOIS LIVESTOCK INDUSTRY

309.827.0912 Bloomington, IL & ilcorn@ilcorn.org ⓒ Illinois Corn Marketing Board ऄ

Kaeb Sales Inc. 484 N State Rt 49 Cissna Park, IL 60924 Office: 815-457-2649 Trent Kaeb : 815-214-4974 trent.kaeb@kaebsales.com

Proud to sell and service:

DAIRY FARM EQUIPMENT

And many more!

Experienced Project Managers NRCS Technical Service Provider Nutrient Management Expertise Assistance with Regulations Structural Design Services Site Planning and Design

MAURER-STUTZ

www.mstutz.com

309-693-7615

Leadership Development

- Dairy Ambassadors
- Dairy Experience and Agricultural Leadership Program
- Summer Internships

Share your Story

- Farmer Trainings
- Undeniably Dairy Grants
- Free items in the Promo Center

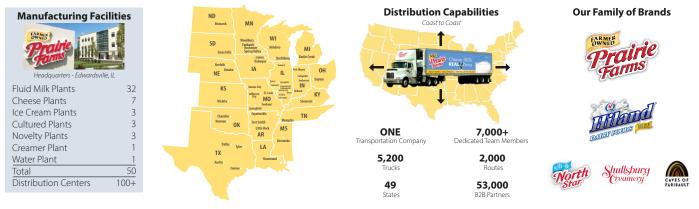
Get involved at MidwestDairy.com

Our Vision: "To be a Growth-oriented, Trusted, and Reliable Resource Delivering Innovative Solutions for Our Customers' Success"

Parnell launched the first FDA-approved products for the synchronization of estrous cycles in lactating dairy cows and beef cows; **GONAbreed**[®] (gonadorelin acetate), in combination with **estroPLAN**[®] (cloprostenol sodium), can be used safely and effectively in various timed breeding programs.

INNOVATIVE TECHNOLOGY

Parnell is developing <u>mySYNCH</u>[™], a digital tool to help veterinarians and producers optimize reproduction and maximize economic gains. mySYNCH combines highly effective in-field training with simple repro reports that use predictive metrics to benchmark your performance against comparable operations.



We are a farmer-owned cooperative. This means we are owned and operated by over 700 farm families who are critical members of society. They have selflessly taken on the tremendous task of producing nutritious, high-quality milk for a growing population, which requires being on the job 24/7, 365 days a year.

We have represented American agriculture since our founding in 1938. Many of our dairy farms are operated by several generations of family members with roots dating back to the 1800s. On average, each farm milks around 120 cows and everyone pitches in to keep them happy and healthy - which means around-the-clock care!

Manufacturing & Distribution Overview

Manufacturing Capabilities Yogurt

Cream Cheese

Cream / Half & Half

Quality Standards

Our manufacturing facilities adhere to robust quality practices and protocols. All processing and packaging equipment is operated under Grade A Food Safety Standards and SQF Level 3 certified to maintain GFSI compliance.

Our Farm to Table Values

From our farm families to the team members who operate our manufacturing facilities and deliver our products, we all have one thing in common...

A Passion for Doing our Part to Help Feed American Families.

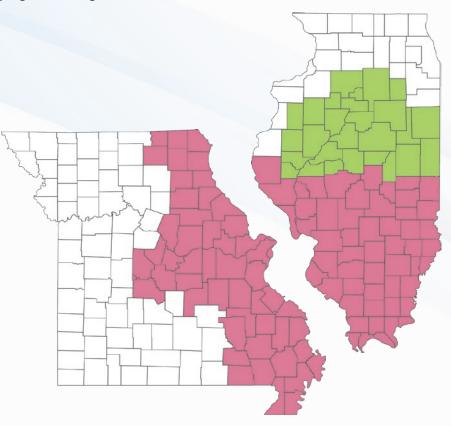
Farmer Owned • Locally Produced • Since 1938 | Prairiefarms.com

MAKE LONGEVITY HER LEGACY.

Equip her with profitable genetics.

The average cost to raise a replacement heifer ranges from \$1,700 to \$2,200! Make sure she is equipped to return that investment and more through genetics to improve health, fertility, and mastitis resistance from Select Sires. Let Select Sires help you **make longevity her legacy**.

Select Sires MidAmerica Phone: (847) 464-5281 www.facebook/SelectSiresMidAmerica


*Replacement heifer costs used from Tranel L. What's It Cost to Raise Heifers?

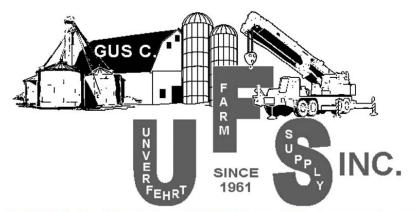
Who We Are

St. Louis District Dairy Council (SLDDC) is a nonprofit nutrition education organization funded by local dairy farmers. Since 1932, SLDDC has served central/southern Illinois and eastern Missouri as the go-to educational resource and advocate for the role of dairy foods as part of a healthful diet. Today, we're as passionate about dairy as ever, and as The Nutrition Education People, we're proud to spread knowledge to local communities, bridging the gap between local dairy farmers and consumers.

Headquartered in St. Louis, Missouri, SLDDC has a satellite office located in Bloomington, Illinois and serves a 131-county area. The staff is comprised of professionals with experience in nutrition, food service management, education and communication, and we take pride in delivering engaging programs throughout the communities we serve.

St. Louis Office info@stldairycouncil.org 314-835-9668 Bloomington Office mnyman@stldairycouncil.org 309-681-4629

A successful and profitable lactation for today's cow requires the strongest start possible. More than addressing just 1-2 metabolic issues, PREP305[™] goes Beyond the Accepted[™] with YMCP[®] products—optimizing cow preparation entering a new diet, environment, and routine to achieve peak performance.


877-466-6455 PREP305.com

@ 💟 in f @techmixglobal

Irinking, eating

DCC Waterbeds® "We use a 1/3rd less bedding than we did before." "We like the waterbeds because the water is constantly moving so every cow is comfortable. As the cow moves the water adjusts to her and when she leaves the water moves back for the next cow to lay down. We use a 1/3rd less bedding than we did before because it stays longer." - Carlie Rademacher, R-Acres, Cottage Grove, WI Installed - 200 in 2018 and 350 in 2021 Contact a DCC Waterbeds dealer near you Nachatelo Construction Mauston, WI Advanced Dairy LLC Spring Valley, WI Preston Dairy Equipment Sparta, WI Eastern Iowa Dairy Systems Epworth, IA Bob's Dairy Supply Dorchester, WI Livestock Systems Charles City, IA Midwest Livestock Systems ota, MN, Renner, SD, Menomonie, WI RLS Vinyl and Farm Supply LLC Hager City, WI Wille Construction ner Equipment Sales & Service Lindstrom Farm Systems Menomonie, WI Northland Farm Systems Owatonna, MN Fuller's Milker Center Inc Lancaster, WI Joe's Refrigeration Inc. Withee, WI Leedstone Melrose, MN, Glencoe, MN, Plainview, MN, Woodville, W Russell Berger Wilson, MI Scharine Group Inc. Whitewater/Janesville, WI & Mt Horeb, WI Field's Mt. Horeb WI mro Sales & Service Durand, WI Gorter's Clay & Dairy Equipment, Inc Pipestone, MN DCC Waterbeds www.DCCWaterbeds.com | (608) 709-2693 Dual Chamber Cow Waterbe Advanced Comfort Tec nc. © 2021

19071 Meridian Road | Centralia, IL 62801 | (618) 493-7357 | sales@unverfehrt.com

TELL US WHAT YOU THINK! Your feedback will help us navigate next year's Summit.

Extension college of agricultural, consumer & environmental sciences

